Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Rhombicubocts

Age 11 to 14
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions

Sandy from The Mount School, York, sent these nets for the solids and Jacqui from the same school sent similar nets. Each solid is made up of 18 squares and 8 equilateral triangles with 3 squares and a triangle around each vertex.

Sandy found that each solid has 48 edges, 24 vertices and 26 faces. It remains a Tough Nut Challenge to describe the differences between these two solids in terms of their planes of symmetry and axes of rotational symmetry.

To help with this you need a model. At the Mount School they use a method that is quick and easy for making models as this classroom picture shows (though it is not of rhombicubocts). The tabs slot together and you need to make the tabs narrow so they don't cover up much of the faces of the solid.

Alternatively you could use Polydron to make the models, or a similar construction kit with plastic pieces that clip together. With equipment of this sort you can make models quickly and use your time to concentrate on the mathematics.


You may also like

A Mean Tetrahedron

Can you number the vertices, edges and faces of a tetrahedron so that the number on each edge is the mean of the numbers on the adjacent vertices and the mean of the numbers on the adjacent faces?

Icosian Game

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Triangles to Tetrahedra

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo