Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Double Trouble

Age 14 to 16
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem

In this problem a surprising number pattern can be explained by using an image. By understanding the significance of the image offered students are helped to perceive the general rule.

 

Possible approach

This printable worksheet may be useful: Double Trouble.

"Imagine a sequence of fractions where each one is half of the previous fraction."

Write these sums on the board and ask students to work them out:

$$\frac{1}{2} + \frac{1}{4} $$ $$\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$ $$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +\frac{1}{16}$$

"What do you notice?"
"Do you think the pattern will continue?"
"How do you know?"
 

Offer students a chance to share their ideas, and then show the video, or recreate Charlie's diagram on the board. Perhaps ask students to recreate the diagram for themselves.

"How could you use the diagram to explain the patterns you have noticed?"
"Can you describe an expression for the sum $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +\dots + \frac{1}{2^n}$?"
"Can you convince someone that your expression is correct for all values of $n$?"

 
Allow students some time to discuss in pairs, then bring the class together to share their insights. It is important to insist on clearly justified arguments that refer to the generality - a key question to ask is "How do you know it will always happen?".
 
The second part of the problem, looking at the sum of the sequence $1 + 2 + 4 + \dots + 2^n$, can be treated in the same way.
 

Possible support

Students could start by working on Slick Summing, in which they are invited to explore the sums of simple arithmetic sequences.

 

Possible extension

Diminishing Returns uses similar diagrams to explore other geometric series and can lead on to discussion of infinite sums.



 

 

Related Collections

  • Other videos

You may also like

Just Rolling Round

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Coke Machine

The coke machine in college takes 50 pence pieces. It also takes a certain foreign coin of traditional design...

Just Opposite

A and C are the opposite vertices of a square ABCD, and have coordinates (a,b) and (c,d), respectively. What are the coordinates of the vertices B and D? What is the area of the square?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo