Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Simply Graphs

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
Vanessa and Annie sent us this solution:

We labelled the graphs like this:
1    2    3
4    5    6
7    8    9 
10 11 12
13 14 15

We grouped the graphs like this:
  • Graphs with loops (1 and 4) and graphs without loops (all the other graphs). 
  • Non-simple graphs (1,3,4) and simple graphs (all the other graphs).
  • Non-connected graphs (3, 15) and connected graphs (all the other graphs).
  • Trees (14,5,6) and non-trees (all the other graphs).
  • Complete graphs (11,7,9) and non-complete graphs (all the other graphs)
We came up with a few other categories of our own.
We noticed that graphs 7,9,10,11,12 and 13 had the same number of edges coming out of each vertex.

We also looked at which graphs you could draw without taking your pencil off the paper and without drawing the same line twice. We found out this is called traceability. Graphs 1,9,10,11,13 are traceable, starting and finishing at the same point. Graphs 2,4,6,8 are traceable, starting and finishing at different points. The other graphs are not traceable.

We checked this by counting the number of edges coming out of each vertex. If you want to start and finish at the same point, this number must be even for all the vertices in the graph. This is because every time you arrive at the vertex by one edge you need to be able to leave it by another. If you want to start and finish at different points, you need two (but only two) odd vertices. This is because the first vertex has an 'exit' edge without a corresponding 'entry' edge and vice versa for the last vertex. If you have 1 or more than 2 vertices with an odd number of edges, the graph is not traceable.

Well done! Can you think of any other interesting properties or ways to group the graphs?

You may also like

Instant Insanity

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Network Trees

Explore some of the different types of network, and prove a result about network trees.

Magic Caterpillars

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo