Or search by topic
This is the solution sent in by Yatir Halevi. Thanks Yatir. A correct solution was also received from Andrei Lazanu.
Let's say we want to find the square of $a$
We know that $a^2 = a^2-b^2+b^2 = (a+b)\times(a-b)+b^2$and for every a, we can pick a certain b that will make the calculation$a^2$ as easy as possible.
For instance if we take $a=35$, we can take $b=5$, we get $35^2=(35+5)\times(35-5)+5^2 =40\times30+25 =1200+25 =1225$.So, if$a$ is a number that ends with a 5: it can be written as $$a=10\times q + 5a^2=(10q+5)^2=(10q+5-5)\times(10q+5+5)+25=10q(10q+10)+25=10^2q(q+1)+25$$ So $a^2$is equal to $q(q+1)$ plus two zeros after it $(10^2)$ that are "stolen" by the 25 that is added on.
Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.
a) A four digit number (in base 10) aabb is a perfect square. Discuss ways of systematically finding this number. (b) Prove that 11^{10}-1 is divisible by 100.