Or search by topic
Chris and Jo decide to play a game.
They put some red and some blue ribbons in a box.
They each pick a ribbon from the box without looking (and without replacing them).
Jo wins if the two ribbons are the same colour and Chris wins if the two ribbons are a different colour.
How many ribbons of each colour would you need in the box to make it a fair game?
Is there more than one way to make a fair game?
This problem is based on one offered by Doug Williams at the 2003 ATM conference in Bath UK. See also http://www.blackdouglas.com.au/taskcentre
Click here for a poster of this problem.
A man went to Monte Carlo to try and make his fortune. Is his strategy a winning one?
Two bags contain different numbers of red and blue marbles. A marble is removed from one of the bags. The marble is blue. What is the probability that it was removed from bag A?
You and I play a game involving successive throws of a fair coin. Suppose I pick HH and you pick TH. The coin is thrown repeatedly until we see either two heads in a row (I win) or a tail followed by a head (you win). What is the probability that you win?