Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Capture and Recapture

Age 11 to 16
Challenge Level Yellow star
  • Problem
  • Teachers' Resources
Capture and Recapture

How do scientists estimate the number of wild animals in a given population?


Why do this problem?


This problem provides an experimental context to introduce students to one method of estimating populations, where direct counting is not feasible.  The method relies on proportional reasoning, and emphasises the value of using an average of several samples to provide a more reliable estimate.

Possible approach


Provide each group of students with a bag (not transparent) containing a reasonably large number of coloured counters (or small multi-link cubes or similar).  The bag should contain a number of red (or some other particular colour) counters or cubes - the colour of the rest doesn't matter.

The bag represents the area being sampled.
The red counters/cubes represent the badgers which have been tagged.
The rest of the counters/cubes represent the rest of the population in the given area.

Students start by counting the number of red counters/cubes.
They then put all the counters/cubes back in the bag, and shake them up.
They remove a handful and count how many red ones there are in their sample.
They then count how many counters/cubes there are altogether in their sample.

From the three recorded figures - the number of tagged badgers, the number of tagged badgers in the sample, and the total number of badgers in the sample, they should be able to estimate how many badgers there are altogether in the area:

We assume that the proportion of tagged badgers in the sample is equal to the proportion of tagged badgers in the area.

Key questions


If you know the proportion of tagged badgers in the sample, how does that help you to estimate how many badgers there are altogether in the given area?
Why might one sample only not provide a good enough estimate?
If you take several samples, how can you combine the results to give a better estimate?

Possible extension


Students should criticise the model and its assumptions.

Possible support


Proportional reasoning can be conceptually difficult for students.
Rather than using a formula, which simply obscures what is going on, help students who find this difficult with a series of questions:

If half the badgers in the sample are tagged, what proportion of the whole population of badgers would we expect to be tagged?  
How many badgers were tagged?
So how big would the population be?

Then vary the proportion, perhaps to a third, or a quarter, to establish the principle that whatever proportion are tagged in the sample, we would expect the same proportion to be tagged in the population.  We know the proportion in the sample, so we use that to estimate how many badgers there are in the population.

You may also like

Big and Small Numbers in Biology

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Bio Graphs

What biological growth processes can you fit to these graphs?

Natural Shapes

How does shape relate to function in the natural world?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo