Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Egyptian Rope

Age 7 to 11
Challenge Level Yellow starYellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Egyptian Rope


The ancient Egyptians were said to make right-angled triangles using a rope which was knotted to make twelve equal sections.

If you have a rope knotted like this, what other triangles can you make? (You must have a knot at each corner.)

What regular shapes can you make - that is, shapes with equal length sides and equal angles?

Click here for a poster of this problem.

Why do this problem?

This problem is one that combines knowledge of properties of shapes with addition, subtraction, multiplication and division of small numbers. It also provides an opportunity for learners to consider the effectiveness of alternative strategies.

Possible approach

You could use this problem during work on either number or shape.

It could be introduced by sharing the picture of the triangle made from rope and asking children what they see. Invite learners to share their thoughts with the whole group and facilitate a discussion about the image.

If it does not come up naturally, draw the class' attention to the fact there are twelve sections in the rope and ask learners to investigate other possible triangles. Have to hand various resources which they could use as they work on the problem in pairs. This might include, for example, headless matches, lolly sticks, cut-up drinking straws, paper, Cuisenaire rods... 

It would be useful to discuss how learners will know that they have found all the possible triangles. Listen out for those who work systematically, in other words they are looking for solutions in a particular order so they know they won't miss any out.

Learners could then go on to the second part of the problem to find regular shapes that can be made using the same piece of string (or all twelve sticks/matches/straws...). Some may continue to work practically, some may prefer to draw sketches and others may consider the problem numerically.

The final plenary could focus on which regular shapes have been possible but in particular about why it is impossible to create, for example, a pentagon.

Key questions

 
Why do you think it isn't possible to make a triangle with these two sides?
How do you know you have found all the possible triangles? Can you tell me why no other triangles are possible with this piece of string?
How are you trying to find regular shapes that you can make with the string?
What numbers are factors of 12? How can this help you to make some regular shapes?

Possible support

Having twelve sticks of equal length (such as headless matches, or even pencils) to build the shapes makes this problem accessible to all children.
 

 

Possible extension

Learners could investigate the possible triangles made with different numbers of sticks as in the problem Sticks and Triangles.

You may also like

Tri.'s

How many triangles can you make on the 3 by 3 pegboard?

Cutting Corners

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Bracelets

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo