Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Egyptian Rope

Age 7 to 11
Challenge Level Yellow starYellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

We had some lovely solutions sent in for this activity, so thank you to everybody who shared their ideas with us.

Jeremy from Thailand sent us this video:

Well done for finding those three equilateral shapes. Jeremy mentions that he found another triangle that wasn't equilateral - I wonder what that one would look like?

Ci Hui Minh Ngoc from Kong Hwa School in Singapore sent in these ideas:

Well done for finding all of the possible triangles and all of the regular shapes! Ci Hui Minh Ngoc has drawn triangles whose sides are 4 x 4 x 4, 2 x 5 x 5 and 3 x 4 x 5 units of length.

Those parallelograms do have equal length sides, but they aren't classed as regular shapes. Have a close look and see if you can work out why.

William sent in this picture of his solutions:

He said:

You can basically do any shape whose sides are a factor of 12, because Egyptian Ropes have 12 knots. So a 3 sided shape like a triangle, a 4 sided shape like a rectangle or square or rhombus or parallelogram, a 6 sided shape like a hexagon, or a 12 sided shape like a dodecagon. And then have these shapes with units that add up to 12.

Good ideas, William! Can you spot which two of your shapes are actually the same?

You may also like

Tri.'s

How many triangles can you make on the 3 by 3 pegboard?

Cutting Corners

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Bracelets

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo