Or search by topic
Square size | Equation for Volume ($V$) |
Value of $x$ that maximizes $V$ |
---|---|---|
$10 \times 10$ | $(10-2x)(10-2x)x$ | $\frac53$ |
$20 \times 20$ | $(20-2x)(20-2x)x$ | $\frac{10}3$ |
$30 \times 30$ | $(30-2x)(30-2x)x$ | $5$ |
$40 \times 40$ | $(40-2x)(40-2x)x$ | $\frac{20}{3}$ |
$50 \times 50$ | $(50-2x)(50-2x)x$ | $\frac{25}{3}$ |
$n\times n$ | $(n - 2x)(n - 2x)x$ | $\frac n6$ |
Paper size | Equation for
Volume ($V$)
|
Value of $x$ that maximizes $V$ |
---|---|---|
$10 \times 10$ | $(10-2x)(10-2x)x$ | $\frac53=1.667$ |
$10 \times 20$ | $(10-2x)(20-2x)x$ | $2.113$ |
$10 \times 30$ | $(10-2x)(30-2x)x$ | $2.257$ |
$10 \times 40$ | $(10-2x)(40-2x)x$ | $2.324$ |
$10 \times 50$ | $(10-2x)(50-2x)x$ | $2.362$ |
$10 \times 1000$ | $ (10-2x)(1000-2x)x$ | $2.494$ |
$10 \times 10000$ | $(10-2x)(10000-2x)x$ | $2.499$ |
Paper size | Value that $x$ approaches as $n$ approaches infinity |
---|---|
$10 \times n$ | $2.5$ |
$1=20 \times n$ | $5$ |
$30 \times n$ | $7.5$ |
$40 \times n$ | $10$ |
$m\times n$ | $\frac m 4$ |
According to Plutarch, the Greeks found all the rectangles with integer sides, whose areas are equal to their perimeters. Can you find them? What rectangular boxes, with integer sides, have their surface areas equal to their volumes?