Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Disease Dynamics - understanding the spread of diseases

These teaching resources have the primary aim of showing how maths can be used to understand epidemics, social interactions and vaccination.



Introduction

Students may have learnt in science lessons about how infectious disease spread, but may not have considered the dynamics of their spread, and how maths can be used for such analysis. As such, these resources provide a cross-curricular activity set, and may be used in conjunction with science departments.


Although the focus of these series of activities is to show everyday applications of school mathematics in the context of infectious disease control, they also consider the ethical concerns of data collection, as well of disease control more generally, to show that this field goes beyond that of just mathematics and biology.

As part of a public engagement research project, these resources have been developed alongside and trialled with students from years 8-10 (ages 12-15), although some of them may be suitable for younger or older students too. Read all about it in the Plus article School students help researchers fight diseases.


How to use these resources

The activities included in this collection vary from small group activities to those which can be done by the whole class together. They can be mixed and matched accordingly, depending on the requirements of the class, and what prior knowledge they may have.

Most of the resources do not require anything more than the slides included, and some paper for the students to do their workings on. One activity requires chess boards and two different coloured counters, and one activity requires dice.
 
Age 11 to 16

The Standing Disease

This short activity encourages students to consider how diseases spread exponentially in an unvaccinated population.

Age 11 to 16

$R_0$ Game

This short activity explores how $R_0$, the reproduction number, affects the spread of disease in an unvaccinated population.

Age 11 to 16

Vaccination Game

This activity encourages students to consider the effect of vaccination on the spread of a disease.

Age 11 to 16

Disease Dilemmas

This activity encourages students to consider ethical questions relating to disease outbreaks, and to explore the difficulties of combatting infectious diseases.

Age 11 to 16

Epidemics on Networks

This activity introduces students to networks, and enourages them to consider these in the context of social networks and diseases.

Age 11 to 16

Analysing Networks

This activity encourages students to consider different ways of interpreting data about networks, and what this means in the context of disease.

Age 11 to 16

Anonymity Game

This short activity encourages students to consider the risks associated with insecure data collection, including how identities can be reconstructed from partial data.

Age 11 to 16

Friendship Paradox

This short activity encourages students to consider a surprising result about the average number of friends that people have.



Context

As mathematical modellers of infectious disease, the designers of these resources have an interest in the control and transmission of infectious disease - such as influenza - from person to person. For these, and for many other infections, school students are especially important as they come into contact with lots of other students, and they often have not yet built up immunities to disease. Therefore, understanding how they interact with each other at this level is vital. As such, the researchers think it is also important for the school students themselves to understand these social networks, and to show the types of analyses that can be used to understand disease dynamics.

We hope that these resources will spark an interest in our field of research - and show a further real world application of mathematics to school-aged students.





These teaching resources have been developed as part of a research project run jointly between the London School of Hygiene & Tropical Medicine, Millennium Maths Project, University of Cambridge and 4 UK schools (Highgate School London, St Pauls Catholic College, Sussex,  The Lakes School, Windermere and St Bonaventure's Catholic Comprehensive School, Newham), whilst working with Year 9 students to understand how social networks change over the course of an academic year, and what effect this might have on the spread of disease. Funding for the development of these resources came from a Wellcome Trust People Award.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo