Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Keep it Simple

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Catherine and Poppy from Stoke by Nayland Middle School made a good start on this problem, and Kijung from Wind Point Elementary School found that:


Not all of Charlie's examples were right.

To be correct, one of the unit fractions must have a denominator which is 1 more than the denominator of the original unit fraction, and the other unit fraction must have a denominator which is the product of the other two denominators:

$$ \frac{1}{n} = \frac{1}{n+1}+\frac{1}{n(n+1)}$$

Here are some other examples that work:

$ \frac{1}{5} = \frac{1}{6}+\frac{1}{30}$
$ \frac{1}{6} = \frac{1}{7}+\frac{1}{42}$
$ \frac{1}{105} = \frac{1}{106}+\frac{1}{11130}$

$\frac{1}{8}$ can also be expressed as the sum of two unit fractions in several ways:

$\frac{1}{8} = \frac{1}{9} +\frac{1}{72}$
$\frac{1}{8} = \frac{1}{10} +\frac{1}{40}$
$\frac{1}{8} = \frac{1}{11} + \frac{1}{n}$ is not possible
$\frac{1}{8} = \frac{1}{12} +\frac{1}{24}$

Felix from Condover Primary acutely observed that unit fractions with denominators which are prime numbers can only be written in one way as the sum of two distinct unit fractions.

Rose, from Claremont Primary School in Tunbridge Wells, Kent worked out a general formula:

$ \frac{1}{z} = \frac{1}{y}+\frac{1}{x}$ (where $z$, $y$ and $x$ are positive integers and $y < x$)

Using $\frac{1}{10}$ as an example:

$ \frac{1}{10} = \frac{1}{11}+\frac{1}{110}$

$ \frac{1}{10} = \frac{1}{12}+\frac{1}{60}$

$ \frac{1}{10} = \frac{1}{14}+\frac{1}{35}$

$ \frac{1}{10} = \frac{1}{15}+\frac{1}{30}$

 

I listed the values of $y-z$ that provide solutions:

$1$, $2$, $4$ and $5$

These are also the factors of $z^ 2$ (i.e. $100$) that are smaller than its square root: $1\times100$

$2\times50$

$4\times25$

$5\times20$

$10\times10$

 

This pattern also occurred for $\frac{1}{12}$:

$ \frac{1}{12} = \frac{1}{13}+\frac{1}{156}$

$ \frac{1}{12} = \frac{1}{14}+\frac{1}{84}$

$ \frac{1}{12} = \frac{1}{15}+\frac{1}{60}$

$ \frac{1}{12} = \frac{1}{16}+\frac{1}{48}$

$ \frac{1}{12} = \frac{1}{18}+\frac{1}{36}$

$ \frac{1}{12} = \frac{1}{20}+\frac{1}{30}$

$ \frac{1}{12} = \frac{1}{21}+\frac{1}{28}$

 

Here $y - z  = 1, 2, 3, 4, 6, 8, 9$

and the factors of $z ^ 2$ (i.e.$144$) are:

$1\times144$

$2\times72$

$3\times48$

$4\times36$

$6\times24$

$8\times18$

$9\times16$

$12\times12$

 

$\frac{1}{10}$ can be written as the sum of two different unit fractions in $4$ ways.

In this case $z ^ 2$ has $9$ factors and $y-z = 4$

$\frac{9-1}{2}=4$

$\frac{1}{12}$ can be written as the sum of two different unit fractions in $7$ ways.

In this case $z ^ 2$ has $15$ factors and $y-z = 7$

$\frac{15-1}{2}=7$

 

Conclusion:

If $n$ is the number of factors of $z ^ 2$,

$\frac{1}{z}$ can be written as the sum of two different unit fractions in $\frac{n -1}{2}$ ways.

 

Rose's conclusion draws on her two examples, but when we generalise in mathematics, we need to be sure that what we have noticed will be true in all other cases.

Can anyone provide a convincing explanation for why Rose's conclusion is, or is not, correct?

You may also like

Tweedle Dum and Tweedle Dee

Two brothers were left some money, amounting to an exact number of pounds, to divide between them. DEE undertook the division. "But your heap is larger than mine!" cried DUM...

Sum Equals Product

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so for any whole numbers?

Special Sums and Products

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo