Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Mind Your Ps and Qs

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

These printable cards may be useful: all 16 propositions, just 8 propositions (as in the Getting Started section)

Why do this problem

This problem will help to train students in the art of careful, logical, pure thinking which will help to develop their general mathematical skill. It will require students to address issues surrounding integration, use of functions, and inequalities, without needing to go into any particular detail with calculation of integrals.

Possible approach

Note: This problem might work best if students have tried Iffy logic previously.
 
Give the students Mind Your Ps and Qs and let them read it carefully and think about what it is asking.
 
Suggest that students discuss in pairs what they think that the arrow symbols mean. Then, as a group discuss, for example, why

$$x> 4 \Rightarrow x> 3\mbox{ and } x=-2 \Leftrightarrow x^3=-8$$

are correct but

$$|x|> 2 \Rightarrow x> 1 \mbox{ and }x^2=4\Leftrightarrow x=2$$
are incorrect.

The next step is to ensure that everyone can construct their own individual examples of correct mathematical statements using propositions from the list. Once students have a couple of examples of such statements they should share them with the class and explain their reasoning. Do others agree or disagree? TALKING about such results will quickly highlight woolly or fallacious thinking and is an important part of the mathematical process.

Once the group has a feel for constructing the implications, they need to concentrate on using all of the statements to construct a complete set of 8 statements. Encourage students to consider their reasoning clearly in each case. Can the class complete the task with a clear explanation in each case?

Key questions

  • What do the arrow symbols mean?
  • Have you read the question carefully?
  • Are there certain statements which look likely to go together in a pair?
  • If an integral is positive or zero, what can we say about the area enclosed?
  • What do the graphs of $\cos x$ and $\sin x$ look like?

Possible support

It is rather helpful to draw diagrams and number lines when thinking about inequalities. Shade the parts of the number line which apply to a particular inequality to help see which way round the logic flows.

If possible, start off with Iffy logic and the support materal suggested there.

The Getting Started section suggests considering half the statements (8 propositions) before looking at the remaining statements.

 

Possible extension

Are there multiple solutions? Can students make up a similar set of questions to give to each other to try? Can they write down really clear explanations of why, for example, $x> 4\Rightarrow x> 2$?


 

You may also like

Fixing It

A and B are two fixed points on a circle and RS is a variable diamater. What is the locus of the intersection P of AR and BS?

Be Reasonable

Prove that sqrt2, sqrt3 and sqrt5 cannot be terms of ANY arithmetic progression.

OK! Now Prove It

Make a conjecture about the sum of the squares of the odd positive integers. Can you prove it?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo