Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cubist Cuts

Age 11 to 14
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

Jake, Ryo and Charlie from Moorfield Junior School have explained how to cut up a 3x3x3 cube using 6 cuts:

"We got a 3 by 3 cube and then we cut it 2 times to make 3 lots of 9 cubes. Then we piled all the cubes on top of each other. Then we took another 2 cuts to leave 9 towers of 3 cubes. Next we layed them next to each other. After that we took another 2 cuts to leave the 27 unit cubes."

Chris B, Elliot and Joseph, also from Moorfield Juniors, sent us a diagram to show where these cuts should be:

diagrams showing 6 cuts

Juliette noticed that it wouldn't be possible with fewer than 6 cuts:

"We need at least 6 cuts because we need one cut for each face of the small cube in the middle of the $3\times 3 \times 3$ cube."

Anthony noticed that, with a $4 \times 4 \times 4$ cube, we can use 6 cuts if we rearrange the cubes:

"First cut the cube in half down the middle, then stack the halves on top of each other (in an $8 \times 2 \times 4$ arrangement) and cut down the middle, to make four $4 \times 4$ slices each 1 unit thick. Then rearrange the cubes into the original arrangement and repeat the process in the other two directions. This will cut the cube into $1 \times 1 \times 1$ cubes. It cannot be done with fewer than 6 cuts because the cubes in the middle will each need at least one cut for each face"

The $n \times n \times n$ cube is a bit trickier. Try a few yourself before looking at this explanation.

First of all let's see how many cuts are needed to cut the cube into slices 1 unit deep. We can then do this in each of the three directions to cut the $n \times n \times n$ cube into unit cubes, and can multiply by three to find out how many cuts are needed in total.

For a cube with side length 3 or 4 units, we need 2 cuts, as Juliette and Anthony explained. For 5 units, we'll need an extra cut in each direction. To cut as efficiently as possible, we should use a method similar to Anthony's: first cut in half (or as close to in half as possible), then stack up the "halves" and repeat until we are left with "slices" 1 unit thick. We can then put the cube back together and repeat for the other two directions.

The general pattern is: for each doubling of $n$, we need an extra 3 cuts to cut an $n \times n \times n$ cube into $1 \times 1 \times 1$ cubes. This is shown in the table below.


$n$ Number of cuts
$1$ to $2$ $1 \times3$
$3$ to $4$ $2 \times3$
$5$ to $8$ $3 \times3$
$9$ to $16$ $4 \times3$
$(2^{k-1} + 1)$ to $2^k$ $k \times3$



You may also like

All in the Mind

Imagine you are suspending a cube from one vertex and allowing it to hang freely. What shape does the surface of the water make around the cube?

Instant Insanity

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Is There a Theorem?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo