Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Isometric Areas

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


Why do this problem?

This problem invites students to look at area in a slightly different way from usual, using a triangle as the basic unit of area rather than a square, to reinforce the concept that area is about the space enclosed within a shape.

Along the way students have the opportunity to derive and justify a formula that they will not have met before.

Possible approach

Display an isometric dotty grid, and create a shape. This dotty grid environment might be useful, and you can print off isometric paper for students.
"On squared paper, it's easy to work out area by counting squares, but on isometric paper it's a bit different. If we want to compare areas of shapes drawn on isometric paper, we can use a small triangle as our unit of area, instead of a square!"

Create some simple shapes and work out the area as a class, perhaps inviting students to write their answers on mini whiteboards. Once everyone is confident at using the triangular unit of area, show students this slide with the image from the problem. "For each parallelogram, can you find its area, and then find a relationship between the length of the sides of the parallelogram and its area, measured in triangular units?"

Give students some time to work in pairs on the problem, sharing any useful strategies and conjectures that they come up with. Then, once students begin to spot a relationship, invite them to consider why the relationship might occur and how they can justify it.

Students who finish quickly could be challenged to draw some trapeziums (in which all four lengths are whole numbers) and come up with a relationship between the side lengths and the area in triangular units.

Finish off by bringing the class together to share their justifications for the area rule they have found. A follow-up lesson could look at More Isometric Areas.

Key questions

How many triangles are there in a parallelogram with side lengths 1 and 1? 2 and 1? 3 and 1?...
If you double one of the lengths, what would happen to the area?
If you double both of the lengths, what would happen to the area?

Can you work out a formula for the area of parallelograms in triangular units?

Possible support

Torn Shapes works with areas based on counting squares, so would be a useful task for students who are not confident with area.

Possible extension

More Isometric Areas invites students to consider the area of triangles using triangular units.
Of All the Areas looks at the area of equilateral triangles with sides that are not whole numbers.

 

You may also like

Kissing Triangles

Determine the total shaded area of the 'kissing triangles'.

Isosceles

Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.

Linkage

Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo