Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Proof Sorter - the Square Root of 2 Is Irrational

Age 16 to 18
Challenge Level Yellow star
  • Interactive environment

Perhaps you might like to try generalising this proof to prove that $\sqrt n$ is irrational when $n$ is not a square number.
 
Now $(1.4)^2=1.96$, so the number $\sqrt 2$ is roughly $1.4$. To get a better approximation divide $2$ by $1.4$ giving about $1.428$, and take the average of $1.4$ and $1.428$ to get $1.414$. Repeating this process, $2\div 1.414 \approx 1.41443$ so $2\approx 1.414 \times 1.41443$, and the average of these gives the next approximation $1.414215$. We can continue this process indefinitely, getting better approximations, but never finding the square root exactly.
If $\sqrt 2$ were a rational number, that is if it could be written as a fraction $p/q$ where $p$ and $q$ are integers, then we could find the exact value. The proof sorter shows that this number is IRRATIONAL so we cannot find an exact value.

You may also like

Be Reasonable

Prove that sqrt2, sqrt3 and sqrt5 cannot be terms of ANY arithmetic progression.

Good Approximations

Solve quadratic equations and use continued fractions to find rational approximations to irrational numbers.

Rational Roots

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo