Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Tiny Nines

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Tiny Nines printable sheet
 

This problem follows on from Terminating or Not and accompanies Repetitiously

In the video below, watch as three calculations are performed on the calculator.
The fourth calculation is not completed. Can you predict what the result will be?

This video has no sound.

If you can't see the video, click below.

The calculations shown are $$1 \div 9$$ $$1 \div 99$$ $$1 \div 999$$
Work out these answers, and then use them to predict the answer to $1 \div 9999$.

The decimal representations of $\frac19$, $\frac{1}{99}$, $\frac{1}{999}$ and $\frac{1}{9999}$ can be used to help you work out the decimal representations of other families of fractions. 

Can you use what you now know to make predictions about the decimal representations of these and other fractions?

  • $\frac13$, $\frac{1}{33}$, $\frac{1}{333}$...
     
  • $\frac1{11}$, $\frac1{111}$, $\frac1{1111}$...
     
  • $\frac{23}{99}$, $\frac{37}{99}$, $\frac{52}{99}$, $\frac{n}{99}$...

Can you show that the recurring decimals in your predictions are equivalent to the fractions that they are supposed to represent?

Calculator used in video: https://www.eeweb.com/tools/online-scientific-calculator/

You may also like

Repetitiously

Can you express every recurring decimal as a fraction?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo