Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Tiny Nines

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem

There are fascinating patterns to be found in recurring decimals. This problem explores the relationship between fraction and decimal representations. It's a great opportunity to practise converting fractions to decimals with and without a calculator.

Possible approach

This problem could be explored alongside Repetitiously. 

Show students the video in the problem, or ask them to find the decimal representations of $\frac19$, $\frac1{99}$, and $\frac1{999}$ for themselves. Invite them to predict what $\frac1{9999}$ will be as a decimal.

Challenge students to convince themselves, and convince you, that the decimal representations really do go on forever. They may do this by performing a division calculation by hand and considering the remainders, or converting the recurring decimals back into a fraction (as demonstrated in Repetitiously). Then they could explore other related fractions such as those suggested in the problem:

  • $\frac13$, $\frac{1}{33}$, $\frac{1}{333}$...
     
  • $\frac1{11}$, $\frac1{111}$, $\frac1{1111}$...
     
  • $\frac{23}{99}$, $\frac{37}{99}$, $\frac{52}{99}$, $\frac{n}{99}$

Key questions

How can a fraction be turned into a decimal representation?
Without using a calculator?

If you know that $\frac19=0.\dot{1}$, how can you work out $\frac13$ as a decimal?
If you know that $\frac1{99}=0.0\dot{1}$, how can you work out $\frac1{11}$ as a decimal?

Possible support

If they haven't already done so, students could start by exploring Terminating or Not.

Possible extension

Challenge students to prove that the patterns they have noticed will continue.

 

You may also like

Repetitiously

Can you express every recurring decimal as a fraction?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo