Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Fibonacci Factors

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

As a start it helps to convert the Fibonacci sequence into a sequence of remainders.

The remainders on division by 2 are : 1, 1, 0, 1, 1, 0, 1, 1

The remainders on division by 3 are : 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0

Each term is produced by adding together the two preceding terms, and keeping in mind that these are remainders after division.

So once a pair of consecutive terms appear a second time the sequence must repeat from then on.
The multiples of 2 (or 3) in the original occur where the term is zero in the remainders sequence.

Thank you Andrei from School No. 205 in Bucharest, Romania for taking this further with a more algebraic solution.

First I wrote the Fibonacci numbers up to $f_{12}$, as calculated from the recurrence relation in the problem. Here they are:

$$\eqalign{ f_0 &= 0,\ f_1 = 1,\ f_2 = 1,\ f_3 = 2,\ f_4 = 3,\ f_5 = 5,\ f_6 = 8,\cr f_7 &= 13,\ f_8 = 21,\ f_9 = 34,\ f_{10} = 55,\ f_{11} = 89,\ f_{12} = 144}.$$

I observed that $f_3,\ f_6,\ f_9$ and $f_{12}$ are even. Up to here, $f_n$ is even when $n$ is a multiple of 3. I must prove that such a pattern continues.

I also observed that $f_4,\ f_8$ and $f_{12}$ are multiples of 3. I could deduce that $f_n$ is a multiple of 3 when $n$ is a multiple of 4.

Now, I must prove the conjectures that I observed. I shall prove them both by induction.

1) $f_n$ - even
$f_3 = 2$ as calculated before. Let $p$ be a positive integer. I consider that $f_{3p}$ is even. I must prove that $f_{3p+3}$ is also even. From the definition of the Fibonacci Sequence, I obtain:

$$f_{3p+3} = f_{3p+2} + f_{3p+1} = (f_{3p+1} + f_{3p}) + f_{3p+1} = 2f_{3p+1} + f_{3p}.$$

Here, $2f_{3p+1}$ is divisible by 2, and, from my hypothesis, $f_{3p}$ is also divisible by 2. So, $f_{3p+3}$ is divisible by 2.

Hence, by the axiom of induction, $f_n$ is even if $n$ is a multiple of 3.

2) $f_n$ - multiple of 3
Let $q$ be a positive integer. I consider that $f_{4q}$ is a multiple of 3. I shall prove now that $f_{4q+4}$ is a multiple of 3:

$$\eqalign{ f_{4q+4} &= f_{4q+3} + f_{4q+2} = (f_{4q+2} + f_{4q+1}) + f_{4q+2} = 2f_{4q+2} + f_{4q+1} \cr &= 2(f_{4q+1} + f_{4q}) + f_{4q+1} = 3f_{4q+1} +f_{4q}.}$$

In this case $3f_{4q+1}$ is divisible by 3, and so is $f_{4q}$ (from my hypothesis). I must also say that $f_4 = 3$, which is a multiple of 3. Hence by the axiom of induction $f_n$ is a multiple of 3 if $n$ is a multiple of 4.

Editor's note: We should still show that these are the only Fibonnaci numbers divisible by 3 to prove the 'only if' condition.

If any two consecutive Fibonacci numbers have a common factor (say 3) then every Fibonacci number must have that factor. This is clearly not the case so no two consecutive Fibonacci numbers can have a common factor. If $f_n$ and $f_{n+2}$ are both multiples of 3 then $f_{n+1}$ must also be a multiple of 3 and hence all Fibonacci numbers will be multiples of 3 which is not the case. This shows that if $f_n$ and $f_{n+4}$ are multiples of 3 then no Fibonacci numbers between them can be multiples of 3, that is $f_n$ is divisible by 3 only if $n$ is a multiple of 4.

You may also like

Code to Zero

Find all 3 digit numbers such that by adding the first digit, the square of the second and the cube of the third you get the original number, for example 1 + 3^2 + 5^3 = 135.

Always Two

Find all the triples of numbers a, b, c such that each one of them plus the product of the other two is always 2.

Parabella

This is a beautiful result involving a parabola and parallels.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo