Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Picturing Square Numbers

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Well done to all of you who sent in correct solutions to this problem. A lot of you spotted the connection with square numbers.

Hannah from Millom School in Cumbria sent in a nicely articulated solution:

The diagram shows that the sum of the first $4$ odd numbers is $16$ because there are $4$ rows and $4$ columns of counters. For the sum of the first $20$ odd numbers there are $20$ rows and $20$ columns. So if I do $30 \times 30$ (or $30$ squared) I get an answer of $900$. For the sum of the first $60$ odd numbers there are $60$ rows and $60$ columns. So if I do $60 \times 60$ (or $60$ squared) I get an answer of $3600$.

If you want the sum of the first $n$ odd numbers the answer would be $n$ squared.

I worked out that $153$ is the $77$th odd number. I did this by adding one (to get $154$) and then divided the answer by $2$.

The sum of the first $77$ odd numbers is $77\times77$ which is $5929$.

To find $51 + 53+ 55+\ldots+ 149 + 151 + 153$ I used the answer from the previous question which was $5929$.

As we were starting at $51$ this time and not $1$, I needed to find the sum of all the odd numbers from $1$ up to $49$. I found that $49$ is the $25$th odd number (by adding $1$ to $49$ and then dividing the answer by $2$) So the sum of the odd numbers from $1$ to $49$ is $25$ squared which is $625$.

Finally I took $625$ away from $5929$ to give an answer of $5304$.

David decided to use algebra to explain his thinking:

The sum of the first $30$ odd numbers $= 30^2 = 900$.

The sum of the first $60$ odd numbers $= 60^2 = 3600$

Quick Method: The sum of the first $n$ odd numbers $= n^2$

What is the sum of $1 + 3 + \ldots + 149 + 151 + 153$?

The formula for odd numbers is $2n-1$

We have: $2n-1 = 153$

$2n = 154$

$n = 77$

So $153$ is the $77$th odd number. The sum of the first $77$ odd numbers $= 77^2 = 5929$. Therefore, the sum of $1 + 3 + \ldots+ 149 + 151 + 153 = 5929$

What is the value of $51 + 53 + 55 + \ldots+ 149 + 151 + 153$?

The answer is the sum of ($1 + 3 + \ldots + 149 + 151 + 153$ - which is already worked out) minus the sum of ($1 + 3 + \ldots +49$)

$49$ is the $25$th odd number (as $2n-1 = 49 \Rightarrow 2n = 50$, so $n = 25$)

Therefore the value of $51 + 53 + 55 + ... + 149 + 151 + 153 = 77^2 - 25^2 = 5304$

Ian from Colton Primary School and Hannah from Thorner C of E Primary School also completed particularly nice solutions, but we don't have space to show them here .





You may also like

Have You Got It?

Can you explain the strategy for winning this game with any target?

Counting Factors

Is there an efficient way to work out how many factors a large number has?

Is There a Theorem?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo