Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Be Reasonable

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?
It is an exercise in proof by contradiction.

Possible approach
First discuss proof by contradiction so that students appreciate how the logic of arguments by contradiction work. You can draw on this article on Proof by Contradiction.

Then discuss the proof that $\sqrt 2$ is irrational.

The students can work with the interactivity Proof Sorter and perhaps some of them might read this article which was written by two undergraduates.

Key Question

If the difference between$\sqrt 2$ and $\sqrt 3$ is an integer multiple of the common difference in an arithmetic series, and the difference between $\sqrt 3$ and $\sqrt 5$ is also an integer multiple of that common difference, can you use these two facts to write down two expressions, eliminate the unknown common difference and then find an impossible relationship?

Possible support
Proof Sorter and article

Possible extension

Can you prove that $\sqrt{1}$, $\sqrt{2}$ and $\sqrt{3}$ cannot be terms of ANY arithmetic progression?


You may also like

Good Approximations

Solve quadratic equations and use continued fractions to find rational approximations to irrational numbers.

Rational Roots

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

The Root of the Problem

Find the sum of this series of surds.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo