Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Just Opposite

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem allows students to explore new ways to see (visualise) the 'tilted square' figure. It combines work on coordinates and area with possibel extensions into Pythagoras' theorem. There is the potential for different insights that can be utilised to invite discussion about different approaches.

Possible approach

A visualisation can be grasped quite easily when someone points it out, but it is more satisfying and much better for the students' development if they gradually feel their way around the structure with moments of revelation.

Invite learners to create tilted squares of their own, identify coordinates of diagonally opposite corners. Can they usethese to help to find areas? Share ideas and generalisations as they arise.

Connections may take time to emerge and different insights might result in different approaches. For example the area of the tilted square might be found through considering one of the squares and a rectangle or seen as half way between the areas of the smaller and larger squares. Give space for learners to find their own visualisation and share different ideas and approaches.

One important configuration to watch for is this one:

tilted square diagram

Key questions

  • Can you work form some specific cases to the general?
  • How do the areas of the squares and rectangles relate?
  • How do the coordinates of opposite coordinates relate to the dimensions of the inner and outer squares?

Possible extension

Students may be familiar already with a proof of Pythagoras' Theorem based on this. If not, this is a good moment to include it and connect the ideas associated with this form.
This may be a good next problem for abler students :Something in Common

Possible support

A problem which focuses on finding the areas of tilted squares is Making Squares .
 

You may also like

Fitting In

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest equilateral triangle which fits into a circle is LMN and PQR is an equilateral triangle with P and Q on the line LM and R on the circumference of the circle. Show that LM = 3PQ

Pinned Squares

What is the total number of squares that can be made on a 5 by 5 geoboard?

Zig Zag

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo