Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Triangles Within Pentagons

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Curt from Reigate College started by getting a general formula for Triangle numbers

$T_n = 1 + 2 + 3+ . . . +(n-1) + n$

$T_n = n + (n-1) + . . . + 3+2+1$

The second line is just a repeat of the first but with the terms in reverse order.

Then adding the two lines the right hand side becomes $n$ lots of $n+1$

So $2T_n=n(n+1)$ and since everything was added in twice,

$T_n=\frac{n(n+1)}{2}$.

David from Sha Tin College used a known general result for any progression that steps up by a fixed amount term on term

$\frac{n}{2}(2a+(n-1)d)$

where n is the number of terms, a is the starting term and d is that step up.

If the step up is equal to 1, and the start value is also 1, you can see that this is the same result as Curt demonstrated.

Continuing with the Pentagonal numbers
The diagram shows $P_4=3T_3+4$
pentagonal arrangement

And in general $P_n=3T_{n-1}+n$

Now using the result for $T_n$ to see $P_n$ in terms of $n$

$P_n=\frac{3n(n-1)}{2}+n$

We now have to show that three times that result is a triangle number

$3P_n=3[\frac{3n(n-1)+2n}{2}]$ and is the same as $3[\frac{3n^2-n}{2}]$

or

$\frac{3n(3n-1)}{2}$

And that's the same as $T_{3n-1}$ the required result.



You may also like

Diophantine N-tuples

Can you explain why a sequence of operations always gives you perfect squares?

DOTS Division

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Sixational

The nth term of a sequence is given by the formula n^3 + 11n. Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. Prove that all terms of the sequence are divisible by 6.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo