Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Trig Rules OK

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

squares and triangles
Curt from Reigate College has a neat way of proving this result by rotating one of the triangles about $C$, keeping the other one fixed, and then using similar triangles.

It is illuminating to see different methods and you may also like to try proving this result using the Sine Rule.

Here is Curt's method.

The question specifies the construction of a line perpendicular to $AB$ drawn through $C$, and continued until it intersects $DE$.

It will be proven that the perpendicular to $AB$ through $C$ bisects $DE$.

To prove this we first develop a useful tool. Note that $\angle BCE=\pi/2$, thus if we were to rotate $B$ by $\pi/2$ radians counter-clockwise to $B'$, then ECB' would be a straight line. Also we note that $\angle ACD= \pi/2$. If we were to rotate $A$ by $\pi/2 $ counter clockwise to $A'$, then $A'$ would coincide with $D$ as $|CD |=|CA|=|CA'|$.
Rotating a triangle
The diagram shows the results of rotating triangle $ABC$ by $\pi/2$ counter clockwise.

As lengths between points are invariant under such rotations, $|CA| = |CA'|$, $|AB|=|A'B'|$ and $|BC| =|B'C|$ thus $A'B'C$ is the same triangle as $ABC$. Clearly $EDC$ is unaffected by the rotation; none of its vertices were rotated or translated.

Now in order to see how this is useful, we start from the first diagram, and draw in the extended perpendicular from $Y$ on $AB$ passing through $C$ intersecting $DE$ at $X$. We repeat the rotation about $C$ as shown in the next diagram.
Bending the line
In addition to the other transformations already discussed, $Y$ goes to $Y'$. $XCY$ is a straight line perpendicular to $AB$, and $Y$ is rotated $\pi/2$ about $C$ to $Y'$. Thus $XCY'$ is a right angle and $A'B'$ is parallel to $XC$.

Again, as the distances between points that are rotated in the same manner are invariant under rotation, it follows that $|B'Y'|=|BY|$ and $|A'Y'| = |AY|$.

It is out intention to show that $|DX| = |EX|$, or $|DE| = 2|DX|$
Clearly $ECX$ is similar to $EBD'$.

$CX$ is parallel to $DB'$ thus $\angle EB'D = \angle ECX$. Similarly angle $\angle EXC = \angle EDB'$. Both triangles share $\angle DEB'$. Thus all three angles in the two triangles are equal, thus the two triangles are similar.

By the properties of similar triangles, $|EB'|/|EC| = |ED|/|EX|$. But $|EB'| = 2|EC|$. Thus $ED = 2|EX|$, as required.

You may also like

Polite Numbers

A polite number can be written as the sum of two or more consecutive positive integers, for example 8+9+10=27 is a polite number. Can you find some more polite, and impolite, numbers?

Impossible Triangles?

Which of these triangular jigsaws are impossible to finish?

Least of All

A point moves on a line segment. A function depends on the position of the point. Where do you expect the point to be for a minimum of this function to occur.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo