Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Sixational

Age 14 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions

The $n^{th}$ term of a sequence is given by the formula $n^3 + 11n$. Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. Prove that all terms of the sequence are divisible by $6$.

Congratulations to Julia Collins, age 17, Langley Park School for Girls, Bromley; Kookhyun Lee; Yatir Halevi age 17; Sim S K age 14; Ang Zhi Ping age 16 for your splendid solutions.

This is Kookhyun Lee's solution: First term: $12$, second term: $30$, third term: $60$, fourth term: $108$. The $100$th term is $100^3 +1100 = 1001100$. The $99$th term is $970299 + 1089 = 971388$ so the first term bigger than a million is $1001100$ when $n=100.$

Proof that all the terms are divisible by $6$.

$$n^3 + 11n = n^3 + 12n - n = n(n^2-1) + 12n$$

This must be a multiple of 6 because $n(n^2-1)$ can be written as $(n-1)\times n \times (n+1)$. Any multiple of three consecutive integers is a multiple of $6$ because it contains a multiple of two (an even number) and a multiple of three.

The following solution, uses a different method. It arrived early in the morning on the first day that the question was published from Yatir Halevi, age 17.5, Maccabim and Reut High-School, Israel.

We have a sequence given by the formula $n^3+11n.$ We have to find the first value of $n$ for which $n^3+11n> 10^6$ and we could use

http://www.sosmath.com/algebra/factor/fac11/fac11.html

The second way is a much nicer one. We notice that $100^3$ is $10^6$, so we know for $n=100$ that $n^3+11n$ is bigger than $10^6$, so we check $n=99$ and we get: $971388$ which is smaller than $10^6$. So we have the answer: $n=100$ is the first $n$ for which $n^3+11n$ is bigger than $10^6$.

The next thing we have to prove is that $n^3+11n$ is always divisible by $6$. This we will prove by using modular arithmetic. We will use modulus $6$. For each $n$, we can have a residue of either: $0$, $1$, $2$, $3$, $4$ or $5$. For $n^3$ we get the following residues:

$0$, $1$, $2$, $3$, $4$, $5$ respectively (to $n$). For $11n$ we get the following residues: $0$, $5$, $4$, $3$, $2$, $1$ respectively (to $n$).

Combining $n^3$ and $11n$ (respectively) we get a $0$ residue, because: $0+0=0$ (mod $6$), $1+5=6=0$ (mod $6$), $2+4=6=0$ (mod $6$), $3+3=6=0$ (mod $6$), $4+2=6=0$ (mod $6$), $5+1=6=0$ (mod $6$). This means that we get a zero residue when dividing by $6$, or in other words, $(n^3+11n)$ is a multiple of $6$ or $6$ divides $n^3+11n$.


You may also like

Old Nuts

In turn 4 people throw away three nuts from a pile and hide a quarter of the remainder finally leaving a multiple of 4 nuts. How many nuts were at the start?

Some Cubes

The sum of the cubes of two numbers is 7163. What are these numbers?

Em'power'ed

Find the smallest numbers a, b, and c such that: a^2 = 2b^3 = 3c^5 What can you say about other solutions to this problem?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo