Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Peaches in General

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This an excellent problem through which to give students an opportunity to experience iterative processes. It also moves, by easy stages, into a multi-variable problem, and the value of using a spreadsheet is readily apparent.

Possible approach

Starting with the initial given problem discuss solutions found by the group.

Invite ideas about possible directions for generalisation, perhaps starting with the easier results like allowing 'plus one more' to become plus two, plus three, and so on.

Clarify what 'result' has actually been discovered for each generalisation and spend plenty of time letting students sense the 'mathematical need' to account for each 'result'. These are good questions to be 'left in the air', allowing students to turn these over in their minds over time.

Key questions

  • What generalisations are possible ?
  • If we explore those one at a time, which shall we take first ?
  • What general statement can we now make ?
  • Can we justify that ? Explaining why it should be so.

Possible extension

More able students will produce more extended generalisations and have a motivation to account for what is observed, challenging one another to communicate clear explanations or visualisations of the fundamental processes.

Able students will sense the potential power of a spreadsheet and should be encouraged to work collaboratively to become proficient and confident in its use.

Possible support

The Stage 3 problem is sufficient as it is, to offer less able students a rich experience producing results that form a clear pattern which will not have been obvious at the start.

You may also like

Euler's Squares

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Odd Differences

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Tree Tops

Can you make sense of information about trees in order to maximise the profits of a forestry company?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo