Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Random Inequalities

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

In this problem we look at two general 'random inequalities'. 

Part 1
Markov's inequality tells us that the probability that the modulus of a random variable $X$ exceeds any random positive number $a$ is given by a universal inequality as follows:

$$ P(|X|\geq a) \leq \frac{E(|X|)}{a^{??}} $$
In this expression the exponent of the denominator on the right hand side is missing, although Markov showed that it is the same whole number for every possible distribution. Given this fact, experiment with the various distributions to find the missing value (??).

Part 2
Another important general statistical result is Chebyshev's inequality, which says that

$$ P(|X-\mu|\geq k\sigma)\leq \frac{1}{k^2} $$ where $\mu$ and $\sigma$ are the mean and standard devitation of the distribution $X$ respectively. This is true for any distribution and any positive number $k$. Can you make a probability distribution for which the inequality is exactly met when $k=2$? In other words, use the distribution maker to create a distribution $X$ for which $$ P(|X-\mu|\geq 2\sigma)=\frac{1}{4} $$

You may also like

Spinners

How do scores on dice and factors of polynomials relate to each other?

Data Matching

Use your skill and judgement to match the sets of random data.

Into the Exponential Distribution

Get into the exponential distribution through an exploration of its pdf.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo