Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Stop the Clock

Age 5 to 7
Challenge Level Yellow starYellow starYellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


This is a game for two players. You can use the interactivity below, or you could print off a page of blank clock faces in Word or as a pdf.

Set the time on the clock to 6 o'clock to start the game.
Decide who will go first (player 1) and who will go second (player 2).
Take it in turns to choose to move the hands of the clock on by $\frac{1}{2}$ hour or by 1 hour. For example, player 1 could choose $\frac{1}{2}$ hour, so the clock hands move to 6.30, then player 2 might choose 1 hour, moving the clock hands to 7.30... etc.
The winner is the player who moves the hands exactly onto 12 o'clock.

Can you work out a winning strategy so that you can always beat your opponent?
 

You may also like

Five Coins

Ben has five coins in his pocket. How much money might he have?

The Puzzling Sweet Shop

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Little Man

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo