Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

More or Less?

Age 14 to 16
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem ?

This problem gives practice with the use of estimating numbers and making choices about the information to use in a question. These are crucial mathematical skills in the sciences. These interesting questions will allow students to practise these skills whilst developing awareness of orders of magnitude in scientific contexts. As with any problems involving approximation, they offer opportunity for classroom discussion and justification.

Possible approach

There are several parts to this question, arranged in approximate order of difficulty. The individual pieces could be used as starters or filler activities for students who finish classwork early. Enthusiastic students might work through them in their own time. Since there is no absolutely 'correct' answer to many of these questions, they might productively be used for discussion: students create their own answers and then explain them to the rest of the class. Does the class agree? Disagree? Is there an obvious best 'collective' answer?

The questions are arranged for printing out into cards in this Word 2003 document .

Key questions

  • What assumptions will you need to make in this question?
  • What formulae will you need to use?
  • How accurate do you think the answer is?
  • What 'order of magnitude' checks could you make to test that your answer is sensible?

Possible extension

Can students make up similar questions? Can they put any upper or lower bounds on the actual numbers that would arise from a detailed calculation?

Possible support

Students might struggle with the 'open' nature of the questions. To begin, they might like to read the Student Guide to Getting Started.

You may also like

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Archimedes and Numerical Roots

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Time to Evolve

How many generations would link an evolutionist to a very distant ancestor?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo