Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Packing 3D Shapes

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Teachers' Resources

  • Warm-up
  • Try this next
  • Think higher
  • Read: mathematics
  • Read: science
  • Explore further
 

For the following solids, try to visualise how best to pack lots of them together so as to use up the least space. Can you draw a clear diagram or give a clear explanation of your packing mechanism in each case?

  1. Spheres
  2. Circular-based cones of a fixed base radius and height. Do the relative values for these two measurements affect your packing strategy?
  3. Long chains of spheres connected flexibly by rigid rods 0-0-0-0-0- (like a long string of beads). How do the sizes of the rods/spheres affect the results
Can you think of biological situations in which the shapes of real objects are closely approximated by some of the shapes described?

Can you think of biological situations in which shapes pack together in the ways described here?

What about situations in which shapes do not pack together in these ways?


Notes and background

Whilst it might seems relatively simple, the problem of 'shape packing' is very difficult mathematically to solve with certainty. Intuitive visualisation often works just as well as a strict mathematical analysis, and often is the only sensible possibility with packing together complicated shapes.

In reality, complex molecules such as proteins pack, or fold, together in very intricate ways..


You may also like

bioNRICH

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your study of biology at A-level and university.

Mixed up Mixture

Can you fill in the mixed up numbers in this dilution calculation?

Dilution Series Calculator

Which dilutions can you make using 10ml pipettes and 100ml measuring cylinders?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo