Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Chi-squared Faker

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

  • Warm-up
  • Try this next
  • Think higher
  • Read: mathematics
  • Read: science
  • Explore further
 

The $\chi^2$ test statistic is given by
$$
\chi^2 = \sum\frac{(f_o-f_e)^2}{f_e}
$$

The weights of a certain type of primate are known through extensive studies to take an expected distribution, given by the expected value below. The weights of a community of these primates from a different location are measured, and are listed in the observed values below:
 

Weight (kg) [0, 9] [10,19] [20,29] [30,39] [40,49] [50,59]
Expected 3 3 3 4 8 9
Observed 5 6 3 5 7 7


Weight (kg) [60,69] [70,79] [80,89] [90,99] [100,109] [110,119] [120+]
Expected 11 12 8 10 4 12 13
Observed 12 17 7 2 12 16 15

How would you describe the expected distribution? Can you think of a good explanation for this pattern of expected data?

You are asked to undertake a Chi-squared test to assess the hypothesis that the weights of the two populations are driven by the same distribution.

Supposing that for unscientific reasons you were keen on rejecting the hypothesis. Before making any detailed calculations, what would be the best way to proceed with the Chi-squared test to make this happen?

Conversely, how might you organise your calculation to maximise the chance of accepting the hypothesis? If you can think of several ways in which to do this, which seems most natural?

Perform the tests to see if you were correct.

Do you think that the data should be accepted or rejected at the 1% significance level?
 


NOTES AND BACKGROUND

As Benjamin Disraeli famously said, 'There are lies, damned lies and statistics'. This problem shows that the notion of 'significance' is not necessarily as clearly cut as the layman might imagine: data can often easily be manipulated to present a variety of possibly misleading pictures. Sometimes this manipulation is purposeful and sometimes due to 'blind' application of an algorithm. Trained statisticians often reserve a sceptical eye when presented with the results of significance tests and are always aware of the assumptions going into a calculation and the implications of these.

You may also like

Very Old Man

Is the age of this very old man statistically believable?

Reaction Timer Timer

How can you time the reaction timer?

Chance of That

What's the chance of a pair of lists of numbers having sample correlation exactly equal to zero?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo