Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

What's My Equation?

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions


The solution is:

$$X(t) = K \exp\left(\log\left(\frac{X(0)}{K}\right)\exp(-\alpha t)\right)$$

Can you find a nice differential equation which this solution satisfies?


The solution is:

$$P(t) = \frac{a\exp(bt)}{a-1+exp(bt)}$$

Can you find a nice differential equation which this solution satisfies?


 
Did you know ... ?

There is a branch of mathematics concerned with solving so-called 'inverse-problems'. In an inverse problem you begin with a solution, or some partial solution, and attempt to construct the equations or theories which might give rise to it. The first solution in this problem is called the Gomperz function and is used to model the size of tumors. Perhaps you might discover the uses for the second solution?

You may also like

It's Only a Minus Sign

Solve these differential equations to see how a minus sign can change the answer

Differential Equation Matcher

Match the descriptions of physical processes to these differential equations.

Taking Trigonometry Series-ly

Look at the advanced way of viewing sin and cos through their power series.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo