Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Dodgy Proofs

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

Consider these dodgy proofs. Although the results are obviously wrong, where, precisely, do the 'proofs' break down? There are four starter questions, four main questions and three questions for pudding. Good luck!
 
 
STARTER QUESTIONS 

S1. A pound equals a penny   

Proof:
£$1 = 100 p = (10p)^2 = ($ £$ 0.1)^2 = $ £$0.01 = 1p$


S2. ${\mathbf{2 = 3}}$

Proof:
We have $2\times 0 =0$ and also $3\times 0 = 0$. 
Therefore we have $2 \times 0 = 3 \times 0$. 
Dividing both sides by $0$ gives $2=3$.


S3. The perimeter of a square is four times its area

Proof:
Choose units so that the side of the square is length 1.
Then the perimeter equals 4 units and the area equals $1\times 1=1$ unit.
Thus, the perimeter of the square is four times its area.

 
S4. ${\mathbf{0 = 1}}$  

Proof:
$0=0+0+0+\cdots$. But $0=1-1$, so $$ 0=(1-1)+(1-1)+(1-1)+\cdots $$ So, by rearranging the brackets, we have $$ 0=1+(-1+1)+(-1+1)+(-1+1)+\cdots = 1+0+0+0+\cdots = 1 $$


 
MAIN QUESTIONS  
 
M1. ${\mathbf{\infty = -1}}$

Proof:
Let $$x=1+2+4+8+\dots $$ Thus, $$1+2x = 1+2(1+2+4+\cdots) = 1+2+4+8+\cdots = x$$ Thus, $1+2x=x$. Rearranging this gives $x=-1$. However, $x$ is also obviously infinite. Thus, $\infty = -1$.

 
M2. Any two real numbers are the same

Proof:
Pick any three real numbers $a$, $b$ and $c$.
If $a^b = a^c$, then $b = c$.
Therefore, since $1^x = 1^y$, we may deduce $x = y$ for any two real numbers $x$ and $y$.


M3. All numbers are equal

Proof:
Suppose that all numbers were not the same. Choose two numbers $a$ and $b$ which are not the same. Therefore one is bigger; we can suppose that $a> b$. Therefore, there is a positive number $c$ such that $a=b+c$. Therefore, multiplying sides by $(a-b)$ gives $$a(a-b) = (b+c)(a-b)$$ Expanding gives $$a^2-ab = ab-b^2+ac -bc $$ Rearranging gives $$a^2-ab-ac= ab-b^2-bc$$ Taking out a common factor gives $$ a(a-b-c) = b(a-b-c) $$ Dividing throughout by $(a-b-c)$ gives $a=b$, therefore $a$ and $b$ could not have been different after all, hence all numbers are equal.

 
 
M4. All numbers are equal - version 2    

Proof:
Choose any two numbers $a$ and $b$, where $a \neq b$, and let $a+b=s$.

Thus, $(a+b)(a-b) = s(a-b)$

Thus, $a^2-b^2 = sa - sb$

Thus, $a^2 -sa = b^2-sb$

Thus, $a^2-sa+s^2/4 = b^2-sb+s^2/4$

Thus, $(a-s/2)^2 = (b-s/2)^2$

Thus, $a-s/2 = b-s/2$

Thus, $a=b$, and so all numbers are equal

 

PUDDING QUESTIONS  
 

P1. ${\mathbf{3 = 0}}$

Proof:
Consider the quadratic equation $ x^2+x+1=0 $. Then, we can see that $ x^2=-x-1 $. Assuming that $x$ is not zero (which it clearly isn't, from the equation) we can divide by $x$ to give $$ x= -1-\frac{1}{x} $$ Substitute this back into the $x$ term in the middle of the original equation, so $$ x^2 +\left(-1-\frac{1}{x}\right)+1=0 $$ This reduces to $$x^2=\frac{1}{x}$$ So, $x^3=1$, so $x=1$ is the solution. Substituting back into the equation for $x$ gives $$ 1^2+1+1=0 $$ Therefore, $3=0$. 
 
 

 
P2. The smallest positive number is 1 

Proof:
Suppose that $x$ is the smallest positive number. Clearly $x\le 1$ and also $x^2> 0$. Since $x$ is the smallest positive number, $x^2$ can't be smaller then $x$, so we must have $x^2\geq x$. We can divide both sides of this by the positive number $x$ to get $x \geq 1$. Since $x$ is both less than or equal to $1$ and greater than or equal to $1$, $x$ must equal $1$. Thus the smallest positive number is $1$. 
 
 
 
P3. ${\mathbf{1=-1}}$.

Proof:
Clearly, $-1=-1$ and $\frac{1}{1} = \frac{-1}{-1}$
Therefore, $-1\times \frac{1}{1}=-1\times \frac{-1}{-1}$
Therefore, $\frac{-1\times 1 }{1}=\frac{-1\times -1}{-1}$
Therefore, $\frac{-1}{1}=\frac{1}{-1}$
Therefore, $\sqrt{\frac{-1}{1}}=\sqrt{\frac{1}{-1}}$
Therefore, $\frac{\sqrt{-1}}{1}=\frac{1}{\sqrt{-1}}$
Multipliying both sides by $\sqrt{-1}\times 1$ gives $\sqrt{-1}\times \sqrt{-1} = 1\times 1$
Therefore, $-1=1$

 

Related Collections

  • More Live Stage 5 problems

You may also like

Fixing It

A and B are two fixed points on a circle and RS is a variable diamater. What is the locus of the intersection P of AR and BS?

Be Reasonable

Prove that sqrt2, sqrt3 and sqrt5 cannot be terms of ANY arithmetic progression.

OK! Now Prove It

Make a conjecture about the sum of the squares of the odd positive integers. Can you prove it?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo