Or search by topic
Proof is, of course, a central part of mathematics. However constructing proofs is often difficult for novices. This problem provides a bridge through the device of classic faulty proofs of 'obviously' wrong results. Analysing these faulty proofs will provide training in reading proofs, raise awareness of mathematical hazards, such as division by zero, and provide motivation for rigour. You might wish to use some of these proof every so often throughout the year.
A and B are two fixed points on a circle and RS is a variable diamater. What is the locus of the intersection P of AR and BS?
Make a conjecture about the sum of the squares of the odd positive integers. Can you prove it?