Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Power Countdown

Age 14 to 16
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


Other ways of making 8

Samuel from Verulam School in the UK: $\left(4^\frac12\right)^3$

Johnny from HKIS in Hong Kong: $\left(32^\frac15 \times 16^\frac14 \times \frac12\right)^3$

Tom from St Georges Church of England Academy: $\left(2^3\times16^\frac14\right)\div32^\frac15$

 

Ways of making 125 from 2, 4, 5, 25, 27, 81

Yuktha from Wallington High School for Girls in England: $25 \times 5 = 125$

Haneen from Ponteland High School in the UK and Yuktha both got this answer:
$5^{\left(81^\frac14\right)}=125$ because $81^\frac14 = 3$ and $5^3 = 125$

 

Numbers you can make using 2, 5, 16, 243, 343, 512

Niall from JAPS, Also Jai and Charlotte from Tytherington High School Macclesfield and Haren from Jebel Ali Primary School all got 1024 in the same way. Haren wrote:
16 to the power of 5 is 1,048,576
1,048,576 to the power of $\frac12$ is 1024

Equivalently, $16^\frac12=4$ and $4^5=1024$.

Jai and Charlotte made 64: $16^\frac12 = 4,$ $243^\frac15=3,$ $4^3 = 64$

Daniel, Alex, Nick and George from Tytherington High School also made 64:
$512^\frac13 =8$
$8^2$ 

Tom from Devonport Boys made 49:
$243 ^ \frac15 = 3$
$343 ^ \frac13 = 7$
$7 ^ 2= 49$

Daniel, Alex, Nick and George said it is impossible to make 89:
89 cannot get exactly as it's prime 81 is as close as we got.

Tom went into more detail.:
89 is impossible to achieve exactly:

$2=2^1$
$5=5^1$
$16=2^4$
$243=3^5$
$343=7^3$
$512=2^9$

  • all the numbers we are using can be expressed as a single prime to a power.
  • raising these numbers to any (pos. integer) power will only increase the value to which the prime has been raised.
  • roots of primes are irrational so rooting these numbers beyond the powers which are already there will only give irrational results: no use to us.
  • 89 is prime but we don't have any numbers which we can use that have 89 as a factor and because we cannot multiply or divide there is no way of changing these factors to achieve a multiple of 89. 
  • I believe a similar argument can be applied for 216 as 216=6$^3$ and we don't have [enough] usable numbers with 6 (or specifically 2 and 3) as a factor.


 

Related Collections

  • Other videos

You may also like

Rationals Between...

What fractions can you find between the square roots of 65 and 67?

Root to Poly

Find the polynomial p(x) with integer coefficients such that one solution of the equation p(x)=0 is $1+\sqrt 2+\sqrt 3$.

Consecutive Squares

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo