Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Drug Stabiliser

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem gives an interesting insight into basics of drug administration and consider how altering the dosage given affects the levels of a drug in the body. It gives a good application of the concept of exponential decay in a way that does not need to be algebraic but gives a greater appreciation of the nature of these formulae in numerical terms.

Possible approach

This problem would work well as a homework exercise followed up by a class discussion of the problem. The concepts required are not complex but may involve some in depth reasoning. It might be a good idea to ask students to explain their reasoning and discuss some of the latter problems in class if they prove too tricky.

Key questions

  • How does the level of a drug in the body vary depending on its half-life?
  • How does the question of when the drug is administered affect the minimum and maximum levels of the drug in the body?
  • Can you represent your thoughts in an algebraic form that makes calculations easier?

Possible extension


Can students plot the relationships that they find in graphical form?

What possible effects could very large doses of certain drugs administered weekly to attain the same minimum drug level as a daily dose have on a patient?

What if a drug breaks down into another physiologically active compound? How would this impact on the level of drug derived active compounds if a daily dose is given?

Can you think of any other scenarios where similar patterns of decay are observed?

Possible support

The worked solution should offer a great degree of support. Some background information on the mathematics of exponential decay would be useful in completing this problem. Graphs of decay relationships may help conceptual understanding.

You may also like

Big, Bigger, Biggest

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Infinite Continued Fractions

In this article we are going to look at infinite continued fractions - continued fractions that do not terminate.

Gosh Cosh

Explore the hyperbolic functions sinh and cosh using what you know about the exponential function.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo