Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Whose Line Graph Is it Anyway?

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

Scientific processes involving two variables can often be represented using equations and line graphs.

In this problem, $9$ processes, their equations and graphs have been mixed up and shown below. In each case, the two variables are represented by the letters $x$ and $y$ and the labels from the axes of the graphs have been removed.

Which can you match up? What is the interpretation of the variables $x$ and $y$ in each case?

Can you identify the physical interpretation of three key points on each of the graphs?

Processes

 

  1. Number of rapidly dividing bacteria present in a food-limited environment, starting from a small initial sample.
  2. Concentration in the blood of a drug following an injection.
  3. Angle of oscillation of a real pendulum of length $1$m in air.
  4. Volume (litres) against pressure (atmospheres) for $1$ mole of an ideal gas at $0^\circ$ C.
  5. Vertical distance travelled by a small, heavy ball dropped from a plane.
  6. Rate of reaction of a catalysed reaction in terms of the concentration of reagent.
  7. Number of rapidly dividing bacteria present in a food-rich environment, starting from a small initial sample.
  8. Hours of daylight per day in a town in the far northern hemisphere.
  9. Model of the distance of the Earth from the sun in astronomical units.

Line Graphs
Equations

 

A: $y(x) = 4.9 x^2$

 

 

B: $y(x) =500 \times 2^{-0.6667x}$

 

 

C: $y(x) =1- 0.01671\cos(0.0172 x)$

 

 

D: $y(x) = 12+10\sin(0.121 x)$

 

 

E: $y(x) = 5\cos(3.13 x)e^{-0.05x}$

 

 

F: $y(x) = (11.3 x)/(2.1+x)$

 

 

G: $y(x) =10 \times 2^{4x}$

 

 

H: $y(x) = \frac{1000000}{10+(100000-10)2^{-4x}}$

 

 

I: $y(x)x = 22.4133$

 

 

 

The numbers have been carefully chosen to represent certain time/length/unit scales for particular physical phenomena. Can you deduce the reason for the choice of any of the numbers?


 

 

 

You may also like

How Many Solutions?

Find all the solutions to the this equation.

Quartics

Investigate the graphs of y = [1 + (x - t)^2][1 + (x + t^)2] as the parameter t varies.

Power Up

Show without recourse to any calculating aid that 7^{1/2} + 7^{1/3} + 7^{1/4} < 7 and 4^{1/2} + 4^{1/3} + 4^{1/4} > 4 . Sketch the graph of f(x) = x^{1/2} + x^{1/3} + x^{1/4} -x

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo