Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Whose Line Graph Is it Anyway?

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Numbered charts
Process Graph Equation Explanation
1 6 H In a food-limited environment bacteria tend to maximum number after initial exponential growth (following lag phase)
2 5 B Concentration will exponentially decay as drug is metabolised
3 9 E Pendulum will have an sinusodial motion with a decaying amplitude due to damping from air resistance
4 7 I Ideal gas equation $pV = nRT$ therefore pressure and volume are in a reciprocal relationship
5 2 A Ball is small and heavy, therefore assume air resistance is negligible at first and so acceleration is constant. $s = ut + \frac{1}{2}at^2$ therefore for $u=0;\ a=g \Rightarrow s=\frac{1}{2}gt^2$ (qualitatively vertical speed represented by gradient of graph is increasing)
6 1 F As concentration of reagent increases so does reaction rate, however as increase continues concentration of the catalyst becomes the limiting factor (saturation)
7 4 G When not food limited, bacteria follow exponential growth after initial lag phase
8 3 D Hours of daylight varies from a maximum at mid-summer to minimum at mid-winter, with a mean value of 12
9 8 C Earth's orbit is not perfectly circular therefore small oscillations about mean distance (1 AU) with period of one year (note non-zero origin on vertical axis)

You may also like

How Many Solutions?

Find all the solutions to the this equation.

Quartics

Investigate the graphs of y = [1 + (x - t)^2][1 + (x + t^)2] as the parameter t varies.

Power Up

Show without recourse to any calculating aid that 7^{1/2} + 7^{1/3} + 7^{1/4} < 7 and 4^{1/2} + 4^{1/3} + 4^{1/4} > 4 . Sketch the graph of f(x) = x^{1/2} + x^{1/3} + x^{1/4} -x

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo