Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Operating Machines

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
My friend has two function machines. The first, called RECIPROCAL, takes as an input any function $f(x)$ and returns another function $1/f(x)$. The second, called PRODUCT, takes two functions $f(x)$ and $g(x)$ and returns a new function which is their product $f(x)g(x)$.




I start off with the function $f(x)=x$. Which functions can I make using the function machines RECIPROCAL and PRODUCT? Can you describe an entire theoretical set of such outputs? Prove your assertions. (Note that I have several copies of this function to hand). Are there any other starting functions which yield the same set of outputs? What sets of outputs will I get by starting with different initial functions?

I have two operator machines. The first, called DIFF, takes any input function and returns another function which is its derivative. (If the derivative function does not exist, then DIFF returns the original function). The second, called INT, takes any input function and returns the implicit integral (i.e. no constant of integration) of the original function (if this integral does not exist then INT returns the original function).



If I again start off with the function $f(x) = x$, what set of outputs can I make using DIFF and INT? Are there any other starting functions which yield the same set of outputs? What sets of outputs will I get by starting with different initial functions?

Can you find any initial functions which yield a finite set of possibilities under RECIPROCAL and PRODUCT or under DIFF and INT?

What happens if you begin with $f(x) = x$ and use any combination of RECIPROCAL and DIFF?

Explore the possibilities when you can use different combinations of RECIPROCAL, PRODUCT, DIFF and INT for various choices of initial function. Can you find any interesting sets of outcomes?

See also the problem Calculus Countdown
 


NOTES AND BACKGROUND

In mathematics and science, the concept of differential and integral operators is very important, with applications ranging from quantum chemistry to analysis of waves. The simplest examples of these are given in this problem under the guise of DIFF and INT.


You may also like

Absurdity Again

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

Old Nuts

In turn 4 people throw away three nuts from a pile and hide a quarter of the remainder finally leaving a multiple of 4 nuts. How many nuts were at the start?

Just Touching

Three semi-circles have a common diameter, each touches the other two and two lie inside the biggest one. What is the radius of the circle that touches all three semi-circles?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo