Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Operating Machines

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Part 1: Using RECIPROCAL and PRODUCT
Starting with $f(x)=x$, $x^n$ is possible for all integers n, and there are no other possibilities. The same set of possibilities can be created by starting with $f(x)= \frac{1}{x}$. No other starting function will yield the same set.

Part 2: Using DIFF and INT
Starting with $f(x) = x$, it is possible to create $0$ and $\displaystyle{\frac{x^n}{n!}}$ for any non-negative integer $n$
Starting with any function from this set, it is possible to generate all others using DIFF and INT.

Part 3:
Functions yielding a finite set of possibilites under DIFF and INT are $e^x$, $\sin x$ and $\cos x$

$\displaystyle{\frac{\mathrm{d}}{\mathrm{d}x} e^x = \int e^x = e^x}$

$\displaystyle{\frac{\mathrm{d}}{\mathrm{d}x} \left( \sin x \right) = \cos x
\rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(\cos x \right) = -\sin x
\rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left( -\sin x \right) = \cos x
\rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left( -\cos x \right) = \sin x}$

The sequence then repeats.

There are others, for example $e^{-x}$ yields two possibilities, and $\sinh x$ and $\cosh x$ also yield two possibilities.

You may also like

Absurdity Again

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

Old Nuts

In turn 4 people throw away three nuts from a pile and hide a quarter of the remainder finally leaving a multiple of 4 nuts. How many nuts were at the start?

Just Touching

Three semi-circles have a common diameter, each touches the other two and two lie inside the biggest one. What is the radius of the circle that touches all three semi-circles?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo