Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Lower Bound

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Vassil Vassilev , a 14 year old Bulgarian student from St Michael's College, Leeds, sent the following solution:

Element No 1 $$ {1\over 2} + {2\over 1} = {1 + 4\over 2} = {5\over 2} = 2 + {1\over 2} = 2 + {1\over 1\times(1+1)} $$ Element No 2 $$ {2\over 3} + {3\over 2} = {4 + 9\over 6} = {13\over 6} = 2 + {1\over 6} = 2 + {1\over 2\times(2+1)} $$ Element No 3 $$ {3\over 4} + {4\over 3} = {9 + 16\over 12} = {25\over 12} = 2 + {1\over 12} = 2 + {1\over 3\times(3 + 1)} $$ Element No 4 $$ {4\over 5} + {5\over 4} = {16 + 15\over 20} = {41\over 20} = 2 + {1\over 20} = 2 + {1\over 4\times(4 + 1)} $$ Element No n

\begin{eqnarray} {n\over n + 1} + {n+1\over n} &=& {n^2 + (n + 1)^2\over n(n + 1)} = {n^2 + n^2 + 2n + 1\over n^2 + n}\\ &=& {2n^2 + 2n\over n^2 + n} + {1\over n^2 + n} = 2 + {1\over n^2 + n}\\ &=& 2 + {1\over n(n + 1)} \end{eqnarray}
Vassil stopped here but do you notice that, as $n$ gets bigger and bigger, so $$ {1\over n(n + 1)}$$ gets smaller and smaller and closer and closer to zero? If this sequence went on for ever the terms would get closer and closer to 2 without ever actually being equal to 2. Another way of seeing this is to look at $$ {n\over n + 1} $$ and see that this must get closer and closer to the value 1 as $n$ gets bigger and bigger and also $$ {n + 1\over n} $$ must also get closer and closer to 1, so the $n$th term of the sequence, namely $$ {n\over n + 1} + {n + 1\over n} $$ must get closer and closer to 2. We say the limit of this sequence, as $n$ tends to infinity, is 2.

Some, but not all, of the points on the graph of $$ y = x + {1\over x} $$ represent terms of the sequence. You might like to draw the graph and look at what happens to it around $x = 1$.

Vassil worked out the $n$th term of the similar sequence formed by adding the squares of these fractions and after doing some algebra to simplify the expression he obtained the following result: $$ \left({n\over n + 1}\right)^2 + \left({n + 1\over n}\right)^2 = 2 + \left({2n + 1\over n(n + 1)}\right)^2. $$ Here again the limit as n tends to infinity is 2. You might like to prove this result in another way.


You may also like

Diophantine N-tuples

Can you explain why a sequence of operations always gives you perfect squares?

DOTS Division

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Sixational

The nth term of a sequence is given by the formula n^3 + 11n. Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. Prove that all terms of the sequence are divisible by 6.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo