Or search by topic
Vassil Vassilev , a 14 year old Bulgarian student from St Michael's College, Leeds, sent the following solution:
Element No 1 {1\over 2} + {2\over 1} = {1 + 4\over 2} = {5\over 2} = 2 + {1\over 2} = 2 + {1\over 1\times(1+1)}
Some, but not all, of the points on the graph of y = x + {1\over x}
Vassil worked out the nth term of the similar sequence formed by adding the squares of these fractions and after doing some algebra to simplify the expression he obtained the following result: \left({n\over n + 1}\right)^2 + \left({n + 1\over n}\right)^2 = 2 + \left({2n + 1\over n(n + 1)}\right)^2.
Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.
The nth term of a sequence is given by the formula n^3 + 11n. Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. Prove that all terms of the sequence are divisible by 6.