Or search by topic
Game a): \textrm{Target} = 8
\mathrm{D} \left( x^2 \right) = 2x
\mathrm{D} \left( 2x \right) = 2
\mathrm{P} \left( 4,2 \right) = 8
Game b): \textrm{Target} = x^4
\mathrm{P} \left( x, x^2 \right) = x^3
\mathrm{I} \left( x^3 \right) = \frac{x^4}{4}
\mathrm{P} \left( \frac{x^4}{4}, 4 \right) = x^4
Game c): \textrm{Target} = \frac{1}{2}
\mathrm{D} \left( x^2 \right) = 2x
\mathrm{D} \left( 2x \right) = 2
\mathrm{R} \left( 2 \right) = \frac{1}{2}
Game d): \textrm{Target} = \frac{x^6}{36}
Method 1:
\mathrm{I} \left( \mathrm{I}(x) \right) = \frac{x^3}{6}
\mathrm{P} \left( x^2,\frac{x^3}{6} \right) = \frac{x^5}{6}
\mathrm{I} \left( \frac{x^5}{6} \right) = \frac{x^6}{36}
Method 2:
\mathrm{I} \left( x^2 \right) = \frac{x^3}{3}
\mathrm{D} \left( \ln(x) \right) = \frac{1}{x}
\mathrm{R} \left( \frac{1}{x} \right) = x
\mathrm{P} \left( x, x \right) = x^2
\mathrm{I} \left( x^2 \right) = \frac{x^3}{3}
\mathrm{P} \left( \frac{x^3}{3}, \frac{x^3}{3} \right) = \frac{x^6}{9}
\mathrm{R} \left( 4 \right) = 0.25
\mathrm{P} \left( 0.25,\frac{ x^6}{9} \right) =\frac{x^6}{36}
Game e): \textrm{Target} = \frac{-32}{x^5}
\mathrm{D} \left( \mathrm{D} \left( \mathrm{D} \left( \ln(x) \right) \right) \right) = 2x^{-3}
\mathrm{R} \left( x \right) = \frac{1}{x}
\mathrm{P} \left( x^{-1}, 2x^{-3} \right) = 2x^{-4}
\mathrm{P} \left( 4, 2x^{-4} \right) = 8x^{-4}
\mathrm{D} \left( 8x^{-4} \right) = -32x^{-5}
Game f): \textrm{Target} = x(2 - x)
\mathrm{P} \left( x^2, \mathrm{R}(\exp(x)) \right) =x^2 \exp(-x))
\mathrm{D} \left( x^2 \exp(-x) \right) = 2x \exp(-x) - x^2 \exp(-x)
\mathrm{P} \left( \exp(x),2x \exp(-x) - x^2 \exp(-x) \right) = 2x-x^2
Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.
What is the longest stick that can be carried horizontally along a narrow corridor and around a right-angled bend?
Find all the turning points of y=x^{1/x} for x>0 and decide whether each is a maximum or minimum. Give a sketch of the graph.