Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Hike and Hitch

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions

The only completely correct solution to this question came, with a very nice diagram, from Vassil Vassilev, age 14, Lawnswood High School, Leeds.

If nobody hiked, the car would need two return journeys plus one single journey, making a total distance of $5\times 60$ miles and hence a total time of $(5\times 60)/40 = 7\,{\rm hrs}\ 30\,{\rm mins}$. You have to find out how much time is saved by the students hiking whenever they are not in the car.

- The distance 10 children moved when the car was going towards the destination point.
- The distance the car moved towards the destination point.
- The distance 15 children moved when the car was going back.
- The distance the car moved back to pick up the rest of the children.

You could work out all the distances but that involves a lot of equations. It is best to focus on the time taken. Let $T$ hours be the total time in which 5 people (plus the driver) are in the car going towards the destination point, and$t$ hours be the total time in which the driver only is in the car going back. We assume that the optimal solution is such that all of the people reach the destination at the same time , that is after$T+t$ hours.

In total, the fifteen people cover $15\times 60$ ($=900$ miles, and this is made up from the miles hitched in the car, and miles hiked on foot. The number of person-miles hitched in the car is$5\times 40T$ , and the number of person-miles hiked is

$$10\times 4T + 15 \times 4t,$$

because 10 people are hiking for $T$ hours (when 5 other people are in the car), and all 15 people are hiking when only the driver is in the car. Thus

$$5\times 40T + (10\times 4T + 15 \times 4t) = 900.$$

This simplifies to give

$$12T + 3t = 45.$$

The car spends $T$ hours travelling forwards, and$t$ hours travelling back towards the start. It therefore travels forwards a distance of$40T$, and backwards a distance of $40t$. Hence$40(T-t)=60$ , or

$$2T-2t=3.$$

Solving these two simultaneous equations for $T$ and $t$, we get$T = 1\,{\rm hr}\ 48\,{\rm mins}$, $t = 3\,{\rm hr}\ 18\,{\rm mins}$, and the total time is $5\,{\rm hr}\ 6\,{\rm mins}$.

As the time would be $7\,{\rm hr}\ 30\,{\rm mins}$ if everyone did the whole journey by car, the time saved is $2\,{\rm hrs}\ 24\,{\rm mins}$.

You may also like

Diophantine N-tuples

Can you explain why a sequence of operations always gives you perfect squares?

DOTS Division

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Sixational

The nth term of a sequence is given by the formula n^3 + 11n. Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. Prove that all terms of the sequence are divisible by 6.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo