Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

The Clue Is in the Question

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

James Bell from the MacMillan academy sent in his impressive solution to this difficult problem. Our congratulations go to James!

Steve says, the argument runs as follows:

1. N and D map proper fractions to proper fractions.

2. The inverses of N and D are unique fractions F.

3. The numerators and denominators never decrease following a transformation.

5. There are no fixed points of $N$ and $D$.

Putting these points together show that any proper fraction is in the set $F$: pick a proper fraction and you can always work backwards in a chain which leads to the proper fraction $\frac{1}{2}$.


James writes:

Applying rule 2 to $\frac{x}{y-x}$ gives $\frac{x}{y}$

Applying rule 3 to $\frac{y-x}{x}$ gives $\frac{x}{y}$

So, $\frac{x}{y}$ is a member of F if either $\frac{x}{y-x}$ or $\frac{y-x}{x}$ are members of F.

Any rational number between 0 and 1 can be written x/y where x and y are integers that share no common factors except 1. Given any such x and y either:

1) (y-x)> x in which case x/(y-x) (as x and y share no common factors except 1 neither can x and y-x) is a rational number between 0 and 1 with numerator+denominator less than x/y (y rather than x+y), whose presence in F would imply x/y's presence by rule 2


2) (y-x)< x in which case (y-x)/x (as x and y share no common factors except 1 neither can x and y-x) is a rational number between 0 and 1 with numerator+denominator less than x/y (y rather than x+y), whose presence in F would imply x/y's presence by rule 3

or 3) (y-x)=x and y=2x so x/y=x/2x=1/2 which we know to be a member of F using these rules


Given x/y, such that x+y> 3, we can generate either x/(y-x) or (y-x)/x (less than 1 greater than 0) whose presence in F implies x/y's presence and has smaller numerator over denominator. If we repeat this algorithm numerator+denominator must eventually fall to 0,1,2 or 3 (can't be negative as numerator and (denominator-numerator) must always be positive as they were to begin with and denominator is always greater than numerator, fraction is < 1)

case 0: only possibility 0/0 which can't be reached as it is not greater than 0

case 1:either 1/0 which can't be reached because it has greater numerator than denominator or 0/1 which can't be reached because it is not greater than 0.

case 2: 2/0 (numerator> denominator), 0/2 is not > 0, 1/1 is not < 1 case 3: 3/0 (numerator> denominator), 0/3 is not > 0, 2/1 is not < 1

which leaves from all cases only 1/2 (which we know is a member of F) can be reached and therefore must be the ultimate destination of all x/y defined above as we apply the algorithm above.

And so as 1/2 is in F so are all x/y (in lowest terms and between 0 and 1)

and so all rational numbers between 0 and 1 are in F QED


You may also like

Be Reasonable

Prove that sqrt2, sqrt3 and sqrt5 cannot be terms of ANY arithmetic progression.

Good Approximations

Solve quadratic equations and use continued fractions to find rational approximations to irrational numbers.

Rational Roots

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo