Or search by topic
In this problem, students are encouraged to measure areas using a triangular unit and come up with a general formula for finding the area of a tilted triangle. It brings together geometrical thinking, algebra, and sequences, and offers a different perspective on Pythagoras' Theorem.
Allow time for reflection and discussion, drawing out ideas such as the use of non-standard units and the interesting result of square numbers.
Once a few areas have been found, encourage the students to make conjectures about the areas of much larger triangles with a tilt of 1, and to justify their ideas. The lesson could be structured in a similar way to the lesson in these videos of the task Tilted Squares.
You could start with the problems Isometric Areas and More Isometric Areas.
Focus on the justification that the tilted triangles are equilateral, and on calculating the areas rather than seeking generalisations.
The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?
Six circular discs are packed in different-shaped boxes so that the discs touch their neighbours and the sides of the box. Can you put the boxes in order according to the areas of their bases?
ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.