Or search by topic
We first solve this equation: \begin{align*} \frac{\mathrm{d}N}{\mathrm{d}t}&=rN(1-\frac{N}{K}) \\ \frac{1}{K} \frac{\mathrm{d}N}{\mathrm{d}t} &= \frac{N}{K} r(1-\frac{N}{K}) \end{align*}
If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.
Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?
The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?