Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Do You Feel Lucky?

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem is one of a set of problems about probability and uncertainty. Intuition can often let us down when we meet probability in real life contexts; this problem has been designed to provoke discussions that challenge commonly held misconceptions such as the Gambler's Fallacy.

Possible approach

Hand out this worksheet (Word, PDF) with the statements from the problem, and give everyone time to read them through and decide for themselves whether they think the advice is good or not.

 
Then arrange the class into pairs, and ask half the pairs to come up with arguments in favour and half to come up with arguments against following the advice. Once each pair has had time to rehearse their arguments, arrange them in groups of four with one pair arguing in favour and one pair arguing against, until they reach a consensus.
 
Next, bring the class together for a discussion about how they would respond to each piece of advice and the mathematics they used to justify their decisions.
 
Finally, ask everyone to read through the statements on their own again, to see if they have changed their original views about any of the advice. Those who have changed their minds could explain to the rest of the class which arguments they found particularly persuasive.
 
In the statements, it has been deliberately left ambiguous whether coins are fair or not and so on, so it may be that there is no "right" answer that can be agreed on. The important point is for learners to discuss intelligently the probability in the situations and challenge some of the popular misconceptions that arise.  
 

Key questions 

Are future results affected by previous results?
Lots of advice is based on accurate statistical data - does that necessarily mean it is useful advice?

Possible support

The problem has been structured as a discussion task so that learners can support each other in coming to a better understanding. By allocating a view for each pair to argue, it allows those who hold these misconceptions the chance to freely explore them without fear of ridicule.

Possible extension

Ask learners to collect over several weeks some examples of probability misconceptions in the media, in school or at home, which could be used to create a classroom display.

The stage 5 problem Discussing Risk and Reward provides more prompts for discussion about probability in the real world.

You may also like

Nine or Ten?

Is a score of 9 more likely than a score of 10 when you roll three dice?

Master Minding

Your partner chooses two beads and places them side by side behind a screen. What is the minimum number of guesses you would need to be sure of guessing the two beads and their positions?

Racing Odds

In a race the odds are: 2 to 1 against the rhinoceros winning and 3 to 2 against the hippopotamus winning. What are the odds against the elephant winning if the race is fair?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo