Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Biology Measurement Challenge

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

Why do this problem ?

These interesting questions will allow students to practise using different units of measurement whilst developing awareness of orders of magnitude in scientific contexts. Some also require students to find additional information.  As with any problems involving approximation, they offer opportunity for classroom discussion and justification.

Possible approach

There are several parts to this question, some easier, some more challenging. The individual images could be used as starters or filler activities for students who finish classwork early. Enthusiastic students might work through them in their own time. If students disagree with each other, or with the answers provided, this could lead to productive discussion.

Key questions

Do you have all the information you need to decide where a particular image should fit in the list? If not, where can you find out what you need?
What formulae will you need to use?
How accurate do you think the answer is?
What 'order of magnitude' checks could you make to test that your answer is sensible?

Possible extension

Challenge students to come up with their own images and questions about order of magnitude.

Possible support

Start with questions which seem most accessible and encourage whole class discussion of the values given.  The article Getting Started with Solving Rich Tasks might be helpful.

You may also like

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Archimedes and Numerical Roots

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

More or Less?

Are these estimates of physical quantities accurate?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo