Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Factorising with Multilink

Age 14 to 16
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

For this problem, you will either need multilink cubes or these sets of number base sheets to cut out: Base Three Base FourBase Five Base Six.

 

In the video below, Charlie and Becky show how you can make rectangles using sets of squares, sticks and units.



Can you make a rectangle to represent $x^2 + 7x + 12$?
Can you do it in more than one base?

 

Watch the video below to see how Charlie and Becky tackled this question:


Take 1 square and 12 units in your chosen base. Put them together with some sticks to make rectangles that will work in all bases.

Charlie and Becky made $x^2 + 7x + 12$ into a rectangle with length $x+4$ and width $x+3$.

How many different rectangles can you make?
What do you notice about the dimensions of your rectangles?

Imagine you had 1 square, lots of sticks and 100 units. What can you say about the dimensions of the rectangles it is possible to make?


Now, take 1 square and 12 sticks in your chosen base. Put them together with some units to make rectangles that will work in all bases.

 

How many different rectangles can you make?
What do you notice about the dimensions of your rectangles?

Imagine you had 1 square, 100 sticks and lots of units. What can you say about the dimensions of the rectangles it is possible to make?

 

If you had 1 square, $p$ sticks and $q$ units, what can you say about the dimensions of the rectangles it is possible to make?

 

Extension

Think about the rectangles it's possible to make if you use two, three, four... squares, some sticks and some units.


You may also be interested in the other problems in our Getting started, getting stuck Feature.

 

Many thanks to Kenneth Ruthven and Paul Andrews whose ideas inspired this problem.

 

Related Collections

  • Other videos

You may also like

Two Cubes

Two cubes, each with integral side lengths, have a combined volume equal to the total of the lengths of their edges. How big are the cubes? [If you find a result by 'trial and error' you'll need to prove you have found all possible solutions.]

Common Divisor

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Novemberish

a) A four digit number (in base 10) aabb is a perfect square. Discuss ways of systematically finding this number. (b) Prove that 11^{10}-1 is divisible by 100.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo