Or search by topic
Consider these three algebraic identities
$$(1-x)(1+x+x^2+x^3)\equiv (1-x^4)$$
and
$$(1-x)\big((1+x)(1+x^2)(1+x^4) \big)\equiv (1-x^8)$$
and
$$\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{4}\right)\cos\left(\frac{x}{8}\right)\cos\left(\frac{x}{16}\right)\equiv\frac{\sin(x)}{16\sin\left(\frac{x}{16}\right)}$$
Prove that they are true for any real number $x$ in the first two cases and any real numbers except multiples of $16\pi$ in the third case.
Use the ideas in your proofs to write down general forms
$$(1-x)(1+x+x^2+x^3+\dots+x^n)\equiv \quad ???$$
and
$$(1-x)\big((1+x)(1+x^2)(1+x^4)\dots(1+x^{2^n}) \big)\equiv \quad ???$$
and
$$\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{4}\right)\cos\left(\frac{x}{8}\right)\cos\left(\frac{x}{16}\right)\dots \cos\left(\frac{x}{2^n}\right)=\quad ???$$
In each case it is possible to write down 'infinite $n$' limiting identities. What are these, and for which values of $x$ are they valid?
By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn
Use the fact that: x²-y² = (x-y)(x+y) and x³+y³ = (x+y) (x²-xy+y²) to find the highest power of 2 and the highest power of 3 which divide 5^{36}-1.