Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Back to Basics

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

As with solutions I have received recently for several of our problems; many of your solutions to "Back to Basics" were in the form of algebraic justifications. Whilst this offers a good view of the problem it does not entirely illustrate what is happening. At the end of the algebraic solution I have added a commentary to help you think beyond the algebra and back to the context. What is going on here and why?

Partial solutions were recieved from Mary Fortune of Birchwood Community High School; Shu Cao and Andrei Lazanu, whose work is given below. Thanks for your contributions.

$123_{20}$ is $1 \times 20^2 + 2 \times 20 + 3 = 443_{10}$

$123_{21}$ is $1 \times 21^2 + 2 \times 21 + 3 = 486_{10}$

$123_{22}$ is $1 \times 22^2 + 2 \times 22 + 3 = 531_{10}$

$531 - 486 = 45$

$ 486 - 443 = 43$

Investigate these differences when $123_{b}$ is converted to base $10$ (for different values of $b$).

Try to explain what is happening.

$123$ in base $b$ can be written as $b^2+2b+3=c$

$123$ in base $b+1$ can be written as $(b+1)^2+2(b+1)+3=d$
\begin{eqnarray} d-c&=&(b+1)^2+2(b+1)+3-(b^2+2b+3)\\ &=&(b+1)^2-b^2+2(b+1)-2b\\ &=&(b+1-b)(b+1+b)+2\\ &=&2b+3 \end{eqnarray}
so when $b=20$, the difference is $43$, when $b=21$, the difference is $45$.

Commentary

The difference between the terms is a linear one of the form $2$ times the base plus $3$.

Is this because the tens digit of the original number is a $2$ and the units digit is a three?

In other words, if the original number had been $142$ would the difference be a linear one of the form $4b + 2$?

Following from this - what would happen if the 100's digit had not been a $1$?


You may also like

DOTS Division

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Novemberish

a) A four digit number (in base 10) aabb is a perfect square. Discuss ways of systematically finding this number. (b) Prove that 11^{10}-1 is divisible by 100.

Latin Numbers

Can you create a Latin Square from multiples of a six digit number?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo